قالب وردپرس درنا توس
Home https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ Science https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ The Plague Killing Frogs Everywhere Is Far Worse Than Scientists Thought

The Plague Killing Frogs Everywhere Is Far Worse Than Scientists Thought



On Thursday, 41 scientists published the first worldwide analysis of a fungal outbreak that has been wiping out frogs for decades. The devastation turns out to be worse than anyone had previously realized

Writing in the journal Science, the researchers concluding that populations of more than 500 species or amphibians have declined significantly because of the outbreak – including at least 90 species presumed to have gone extinct. The figure is more than twice as large as earlier estimates.

"That's fairly seismic," said Wendy Palen, a biologist at Simon Fraser University who is a co-author of a commentary accompanying the study. "It now earns the moniker of the most deadly pathogen known to science."

[ Like the Science Times page on Facebook. | Sign up for the Science Times newsletter. ]

Scientists first noticed in the 1970s that some frog populations were declining quickly; by the 1980s, some species appeared to be extinct . The losses were puzzling, because the frogs were living in pristine habitats, unharmed by pollution or deforestation.

In 2015, Dr. Scheele and his colleagues gathered data from over 1,000 published papers on Bd, and traveled around the world to meet with experts and their unpublished observations.

Not only did the team analyze data on living amphibians, but they also looked at data from museums, where scientists found Bd DNA embedded in preserved specimens tucked away in cabinets

The new study showed that some amphibians are at greater risk than others.

The fungus thrives in cool, moist conditions. As a result, frogs that live in cloud forests on mountainsides have been hit particularly hard.

Big frogs are at greater risk, too, possibly because they don't multiply as quickly as small ones. Scheele and his colleagues identified 501 species in decline, far greater than the previous estimate of 200. Factors once thought to account for decimation of frog populations – like climate change and deforestation – are not the greatest threats, the scientists found. [19659002] "A lot of those hypotheses have been discredited," said Dr. Scheele. “And the more we find out about the fungus, the more it fits with the pattern.”

If it turns out, Bd wiped out some species long before it was discovered. Only by going back to museum specimens were scientists able to estimate the toll. "It's scary that so many species can become extinct without us knowing," said Dr. Scheele

The decimation of frogs peaked in the 1980s, the researchers found, a decade before the discovery of Bd. Today, 39 percent of the species that suffered population declines in the past are still declining. Twelve percent are showing signs of recovery, possibly because natural selection is favorably resistant animals.

Scheele is guardedly optimistic about future wildlife outbreaks. The element of surprise may have had a lot to do with Bd's devastating success.

"It was expected or predicted, and so took the research community a long time to catch up," said Dr. Scheele

In 2013, researchers discovered that a related fungus was attacking fire salamanders in Belgium. Called Batrachochytrium salamandrivorans (Bsal for short), it seemed poised to do to salamanders what Bd has done to frogs.

But this time, things are playing out differently.

Researchers discovered the outbreak and identified Bsal quickly. They immediately started running experiments to understand the threat it posed. Thanks to barriers to trade now in place, Bsal has yet to threaten another species anywhere. "We've learned, and we're dealing with it better," said Dr. Scheele. "I guess the question is always," Are we doing enough? And that's debatable. "

There are plenty of reasons to worry about outbreaks to come. Found to reach New Guinea, found at a wealth of amphibian species found nowhere else on Earth

If a Bd-infected frog got to either place – through the pet trade, or as an accidental stowaway – the fungus would have A fixed number of vulnerable hosts to attack.

"It could be a meltdown of the ecosystems over there," said Daniel Greenberg, a graduate student at Simon Fraser University and author of the Science commentary.

The loss of frogs can alter entire ecosystems.

Without tadpoles to guzzle algae, blooms may choke streams. Without frogs to eat insects, some disease-carrying species may become more common. Birds and other predators that eat frogs have to find alternatives.

Scientists are not even able to rest about the species that have emerged intact from the Bd assault. Another strain of Bd, or some different species of altogether fungus, may prove to be even deadlier.

"It's just Russian roulette, with moving pathogens around the world," said Dr. Scheele.


Source link