قالب وردپرس درنا توس
Home https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ Science https://server7.kproxy.com/servlet/redirect.srv/sruj/smyrwpoii/p2/ Huge Earthquake in Bolivia Has Revealed Fixed Mountain Ranges Below Earth's Surface

Huge Earthquake in Bolivia Has Revealed Fixed Mountain Ranges Below Earth's Surface



Classic sci-fi writer Jules Verne once imagined a whole subterranean landscape deep inside the planet, complete with lost prehistoric species and plant life. The book was aptly titled Journey to the Center of the Earth.

We might not actually find dinosaurs down there, but new research is revealing features in the underworld resembling structures on the surface. Far from a bubbling hot mess, there are mountains deep below rivalling anything up here.

Geophysicists from Princeton University in the US and the Chinese Academy of Sciences used the echoes of a massive earthquake that struck Bolivia two decades ago to piece together the topography deep beneath the surface.

On June 9, 1

994, a 8.2 magnitude tremor rocked a sparsely populated region of the Amazon in the South American nation.

"Earthquakes this big don't come along very often," says geoscientist Jessica Irving.

Not only was it big, it was deep, with a focal point estimated at a depth of just under 650 kilometers (about 400 miles). Unique quakes that grind through the crust, the energy from these samples can shake the whole mantle like a bowl of jelly.

The tremor happened to be one of the first to be measured on a modern seismic network, providing researchers with unprecedented recordings of waves bouncing through our planet's interior.

Just like the soundwaves from an ultrasound can reveal differences in the density of tissue inside a body, the huge waves pulsing through Earth's molten guts as its crust shudders and grinds against itself can be used to put together an image of what's down there

Only recently geoscientists used signatures in these waves to determine the rigidity of the planet's core.

In this instance, the researchers took advantage of the 1994 quake's intensity to detect waves scattering as they transitioned between layers, revealing details or the boundaries.

"We know that almost all objects have surface roughness and therefore scatter light. the California Institute of Technology.

"In this study, we investigated scattered seismic waves traveling inside the Earth to constrain the roughness of the Earth's 660 kilometer boundary. "

.

The deepest hole we've ever dug is a paltry 12 kilometers (7.5 miles) deep, so without a Jules Verne scale tunnel to drop us down, we've no idea what this transition zone looks like. Until now.

Based on those all-important waves coursing through the boundary, the researchers have reached the meeting point between the mantle's upper and lower parts is a zig-zagging mountain range that puts anything on the surface to shame. [19659003] "In other words, stronger than the Rocky Mountains or the Appalachians is present at the 660 kilometer boundary," says Wu.

This jagged line has significant implications for Earth's formation. Most of our planet's mass consists of mantle, so knowing how it mixes and changes by transferring heat informs us of how it evolves over time.

Different takes on the evidence have produced competing models on how minerals flow and churn within the pressurized rock

Knowing the details of this subterranean mountain could determine the fate of various models describing the history of our planet's ever-changing geology.

"What's exciting about these results is that they give us new information to understand the ancient tectonic plates which have descended into the mantle, and where ancient mantle material might still reside, "says Irving.

. And forget about the mastodons and giant insects. But the lost world in our feet still holds about our past if we know where to look.

This research was published in Science .


Source link